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Abstract -A hybrid Eulerian-Lagrangian model is developed to analyze dispersed flow film boiling in a 
vertical straight tube under typical reflooding conditions. The effect of the liquid phase on the vapour field, 
which is established in a two-dimensional grid, is calculated by tracking the three-dimensional trajectories 
of a large number of sample droplets. The detailed description of droplet hydrodynamics includes droplet 
size distribution, initial inertia, different mechanisms of break-up and interaction of the droplets with the 
wall, and the forces due to the temperature and velocity fields of the continuous phase. © 1997 Elsevier 

Science Ltd. All rights reserved. 

1. INTRODUCTION 

The study of the convective boiling of a steam-droplet 
mixture is of interest for industrial equipment like 
steam generators and reheaters. Highly disperse drop- 
let flow in a vapour stream can also exist in a nuclear 
core during a hypothetical 'loss-of-coolant-accident'. 
Under these conditions, the liquid is not in contact 
with the hot wall and the calculation of the heat trans- 
fer rates is of paramount importance for the evalu- 
ation of the maximum rod surface temperature, and 
thus of the safety margins. A major concern is the 
cooling effectiveness of such a steam~lroplet mixture 
during the reflooding phase of the postulated accident, 
especially under low flooding rate conditions (Fig. 1). 

Recent experience with the one-dimensional (I-D) 
computer codes employed in safety analysis has 
revealed the difficulties encountered in calculating the 
cladding temperatures in the zones where such a dis- 
persed flow film boiling (DFFB) regime is the pre- 
vailing heat transfer mechanism [1, 2]. 

Since substantial thermal and phase-velocity non- 
equilibrium can be present under such conditions, the 
appropriate modeling of interfacial mass and energy 
transfers is of crucial importance. The droplets act 
as heat sinks for the vapour and control the vapour 
temperature profile which, in turn, determines the wall 
heat transfer rate. Very high vapour superheating 
rates have been reported in tube experiments for low 
mass fluxes [3] : strong reductions of the interfacial 
heat transfer rates far away from the quench front, 
with respect to the commonly accepted theories, have 
been inferred by Evans et al. [3] from their analysis of 
the Lehigh University single-tube 'slow reflooding' 

experiments. Thus, the calculation of the thermal non- 
equilibrium is the major challenge for the dispersed 
flow film boiling models. 

A recent extensive review of the prediction methods 
for dispersed flow film boiling including an overview 
of the results obtained by the most commonly used 
models and correlations [4] concluded that no model 
can be recommended for general use. Even the mech- 
anistic models suffer from the uncertainty in the clos- 
ure laws and a substantial difficulty in accounting for 
the droplet hydrodynamic behaviour and its influence 
on the vapour field. 

The most common mechanistic models include a 
stepwise integration of the one-dimensional con- 
servation equations for the two phases, considering 
heat transfer from the wall to the vapour and the 
droplets, as well as from the vapour to the droplets. 
The droplet population is represented by a unique 
droplet diameter determined by some 'local' criterion. 
Wall-to-vapour heat transfer rates are usually cal- 
culated using one of the correlations developed for 
single-phase gas flow and the actual vapour tempera- 
ture. The degree of success of the models of this class 
is highly variable. 

The numerous attempts to refine this basic I-D 
model appear to be insufficient [4] mainly because, as 
recognized by Yao and coworkers [5], the thermal 
boundary layer is two-dimensional. As discussed in 
detail by Andreani and Yadigaroglu [1] the fun- 
damental difficulty in modelling these phenomena by 
a 1-D model is due to the fact that quantities, such as 
the vapour velocity and temperature, droplet con- 
centration, droplet diameter, etc., are not uniformly 
distributed across the channel, and the shape of their 
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NOMENCLATURE 

A flow area of the tube [m 2] I4/_ 
cp vapour heat capacity [kJ kg ~ K-~] 
CD drag coefficient We 
d droplet diameter [m] Wei 
d32 Sauter mean diameter (SMD) [m] z 
d5o volume median mean diameter [m] ( ) 
D internal tube diameter [m] 
G mass flux [kg m -2 s 1] 
h heat transfer coefficient [W m -2 s 1] ~g 
H specific enthalpy [kJ kg-t] ~f 
kg molecular conductivity [W m i K-~] F 
kr droplet initial radial velocity multiplier 
Ke,k droplet size reduction rate by AAw 

evaporation [m s ~] 
m mass [kg] At 
~/ mass flow rate [kg s-~] A G 
Nk droplet number flow rate [s- i] 
NR number of Eulerian radial meshes Az 
NGR number of droplet groups ~k 
q" heat flux [W m 2] ~t 
q" convective heat flux [W m -z] p 
q~o direct-contact wall-to-droplet heat flux ~r 

[W m 2] 

qgf radiative heat flux vapour-to-liquid 
[Wm 2] 

qi'n net input heat flux to the wall 
[W m 2] a 

q~aa radiative heat flux from the wall = c 
q~,f + q~g [W m 2] cr 

q~f radiative heat flux wall-to-liquid d 
[W m -  2] eft 

q~g radiative heat flux wall-to-vapour end 
[W m -  2] 

q"~,g volumetric heat generation due to eq 
radiation [W m -3] f 

q~'~ interfacial heat transfer rate per unit g 
volume [W m -3] fg 

r radial coordinate, distance from the i 
tube axis [m] i,imp 

r~ radial location of the lth Eulerian I 
radial node [m] k 

rk radial position of the kth group droplet 
centre [m] 

Rk radius of the kth group droplet [m] 
SMD Sauter mean diameter [m] 
t time [s] ref 
t* non-dimensional time s 
tBu non-dimensional break-up time t 
T temperature [°C or K] w 
u local vapour velocity (time averaged) z 

[ms t] 0 
U cross-sectional average vapour 

velocity [m s-~] 
Ufg cross-sectional average relative c 

velocity [ms i] dc 
G volume of the Ith Eulerian radial mesh int 

[m31 tad 
(" droplet volumetric flow rate [m 3 s -1] z 
x quality + 
w local droplet velocity [m s ~] 

cross-sectional average axial droplet 
velocity [m s ~] 
Weber number = pgU~gd/a 
impact Weber number = &w2rd/a 
axial coordinate [m] 
average over the cross-sectional area. 

Greek symbols 
void fraction 
liquid fraction 
volumetric vapour generation rate 
[kgm 3s 1] 

area of the wall in the Eulerian axial 
mesh [m 2] 
residence time [s] 
droplet volume loss by evaporation 
[m 3] 
length of the Eulerian axial mesh [m] 
effectiveness of the contact 
dynamic viscosity [kg m -  t s-  1] 
density [kg m 3] 
surface tension [kg s -2] 
angular position in the cross-sectional 
plane. 

Subscripts 
aerodynamic break-up 
contact, capillary break-up 
critical 
droplet 
effective 
time or location at which the break-up 
process terminates 
equilibrium ( for droplet population) 
liquid 
vapour 
difference between the two phases 
interface 
impact, impact break-up 
Ith Eulerian radial node 
kth group of droplets 

m,max maximum 
res restitution, i.e. after contact with the 

wall 
r in radial direction 

reference 
saturation state 
tangential 
wall or wave 
in axial direction 
at the quench front location. 

Superscripts 
in the cross-sectional plane 
direct contact 
interracial 
radiation 
in axial direction 
above quench front 
below quench front. 
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Fig. I. Flow patterns and heat transfer regimes in a heated channel under low flooding rate conditions. 

profiles is highly dependent on the initial conditions 
and flow history. Under such circumstances, the use 
of interfacial closure laws that employ cross sectional- 
average quantities is a fundamental limitation. A com- 
pletely realistic modelling of dispersed flow film boil- 
ing is possible only if the multi-dimensional effects are 
considered. 

A review of previous multi-dimensional models of 
dispersed flow film boiling is presented first. A more 
extensive discussion can be found in the review paper 
by Andreani and Yadigaroglu [4]. From the survey of 
the available models, it was recognized that many 
aspects of dispersed flow film boiling outlined above 
had been neglected ; other aspects had been taken into 
account in only a crude way or using assumptions that 
make the model non-suitable for the description of 
the phenomena under reflooding conditions. 

The purpose of this present work was to undertake 
a comprehensive attack on the mechanistic modelling 
and a full synthesis of the available relevant infor- 
mation. The importance of the processes that have not 

been adequately modelled is investigated by incor- 
porating realistic submodels in a mathematical frame, 
especially conceived for the analysis of the specific 
reflooding situation. To limit the complexity of the 
mathematical treatment and to simplify comparisons 
with experimental data, the model is limited here to 
a simple tubular geometry; moreover, dispersed flow 
(void fraction ~g > 0.8) is assumed to exist immediately 
above the quench front, as expected for positive quality 
conditions at the quench front (QF) (Fig. 1). 

This approach necessarily leads to a rather complex 
model, which cannot be easily incorporated in a com- 
puter program of more general use. The goal of the 
investigation is, however, to identify the phenomena 
which must be accounted for a realistic simulation of 
dispersed flow film boiling and to provide a tentative 
explanation for the failure of the 1-D approach under 
certain conditions. Hopefully, the results of the pre- 
sent investigation will help define new guidelines for 
the improvement of the practical (necessarily l-D) 
prediction methods for dispersed flow film boiling. 
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The comparison of the results obtained by the novel 
model with experimental data and extensive para- 
metric studies are presented in a companion paper 
(Part ll),  where the 1-D results are also included and 
the deficiencies of the I-D approach are discussed. 

1.1. Previous two-dimensional analyses 
The most questionable aspect [1] of most of the 

previous 2-D studies is the hypothesis of uniform rad- 
ial droplet concentration [6, 7], which is based on 
experimental findings in a range that covers neither the 
typical conditions of dispersed flow during reflooding, 
nor the voidage conditions encountered in most prac- 
tical applications. Moreover, experiments performed 
in adiabatic tubes have shown the existence of con- 
centration profiles. 

Another argument against the uniform con- 
centration assumption comes from the studies on the 
trajectories of droplets entering a thermal boundary 
layer [8, 9]: in the region above the quench front, 
because of the low gas Reynolds number, only very 
tiny droplets could be accelerated enough in the tur- 
bulent core to penetrate the viscous layer. One would 
expect, however, large drops having significant radial 
momentum to be able to penetrate. 

The first model that combines the 2-D analysis of 
the vapour field with the analysis of the radial 
migration of the droplets was proposed by Kirillov et 
al. [10]. The radial droplet concentration distribution 
is not imposed a priori; the profile evolves under the 
influence of the forces that act on the drop (drag, lift, 
added mass and buoyancy) and turbulent diffusion. 
The thrust force (due to non-uniform evaporation) is 
not included in the analysis because of the low wall 
temperatures typical of the applications considered 
(steam generators). Direct contact heat transfer is 
taken into consideration, while radiation is neglected. 

The model of Kirillov et al. features a quite com- 
plete description of the droplet hydrodynamics and 
heat transfer processes occurring in the post-dryout 
zone of a steam-generator tube, under conditions of 
high pressure, high mass flux, moderate to high quality 
and low wall temperatures. It is less adequate for the 
study of typical reflooding situations because of the 
embodied assumptions : absence of radiation, neglect 
of the droplet break-up processes and of the thrust 
force. Moreover, observing the results [11] calculated 
for typical conditions, one realizes that the droplet 
concentration profile evolution is controlled by the 
diffusive mechanisms. This is justified for the small 
droplets (less than a few hundred ~tm), that one 
expects at high pressures, entrained in a strongly tur- 
bulent flow, but is not correct when large droplets are 
flowing in a weakly turbulent vapour velocity field. It 
has been shown, both experimentally [12, 13] and 
theoretically [13], that the effect of particle-turbulence 
interaction on the deposition rates of relatively large 
particles is practically negligible. Under typical 
reflooding conditions, large chunks of liquid are pre- 
sent just above the quench front and an 'equilibrium' 

size distribution is attained downstream of the region 
dominated by break-up and coalescence. In this region 
the average droplet diameter is not smaller than 0.5 
ram. Therefore the motion of the droplets is domi- 
nated by their initial inertia at the entrainment point 
and by the drag and lift forces originating from their 
interaction with the mean velocity field and with the 
wall (thrust force). 

Some interesting features of post-dryout heat and 
mass transfer are revealed by the computational 
experiments carried-out by Kirillov et al. [11]. The 
radial droplet concentration profile exhibits a distinct 
maximum in the central part of the channel, and 
smoothly decreases to zero at the wall. This result is 
supported by experimental data from annular~dis- 
persed flow (Kirillov et al. [11]). 

2. THE MODEL 

Two main limitations affect the models presented 
to date: the assumption of uniform droplet con- 
centration over the cross section or the use of a profile 
basically resulting from turbulent diffusion, and lack 
of an adequate modelling of the break-up processes. 
For a realistic simulation, the liquid concentration 
profile has to be calculated by taking into account the 
initial inertia of the droplets and their interactions 
with the vapour velocity field and with the wall. The 
initial size distribution of the droplet population and 
its evolution under the effects of break-up and evap- 
oration have also to be considered: the effect of the 
presence of droplets of largely different sizes deserves 
special attention, since these have different histories. 

The effect of the non-uniform liquid distribution on 
the vapour temperature field (distributed heat sink 
effect) has to be calculated taking into account the 
spectrum of the droplets, their velocities and their 
positions. Moreover, attention must be paid to the 
mechanism that controls the droplet generation at the 
quench front, as the initial axial and radial velocities, 
as well as the initial droplet diameter, can be critical 
parameters for the correct simulation of dispersed 
flow film boiling. Therefore the purpose of the present 
work is to develop a model that couples a detailed 
analysis of the droplet hydrodynamics with con- 
sideration of a 2-D vapour field. 

This new model employs a Lagrangian description 
of the liquid phase and a Eulerian treatment of the 
vapour field : this technique, often used in combustion 
science and in the study of spray coolers and absor- 
bers, has never been adopted for the fundamental 
study of problems related to reactor safety. 

It is evident that the value of several parameters 
must be entered into such a model to arrive at the 
desired level of detail. Many of these values are largely 
unknown, and will be determined by analogy with 
similar physical situations; their importance is 
assessed by extensive parametric studies in the com- 
panion paper (Part II). 

The initial conditions for the droplets are carefully 
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selected on the basis of a phenomenological descrip- 
tion of the entrainment process : initial axial and radial 
velocities, as well as initial diameter of the droplets 
can be critical parameters of the simulation. 

The computational scheme associated with the pre- 
sent version of the model requires specification of the 
total heat flux and calculates the wall temperature 
distribution. 

3. MAJOR ASSUMPTIONS 

Several assumptions are made to arrive at a trac- 
table problem : 

(a) The situation some distance downstream from 
the quench front changes relatively slowly, so that it is 
possible to use the steady-state conservation equations. 

(b) A further important simplification is obtained 
by considering constant pressure for the high void 
fraction mixture flowing at low velocity (typically well 
below 30 m s-~). 

(c) Another major assumption is that only one-way 
coupling exists between the velocity fields of the two- 
phases : the influence of the vapour velocity on the 
droplet velocities is considered, but the action of the 
dispersed phase on the turbulent vapour-phase 
characteristics is neglected ; a standard fully turbulent 
vapour velocity profile is used. 

This last simplification is seldom justified [1], but has 
been adopted for simplicity, as the investigation is 
focussed on other, usually neglected, aspects of the 
process (break-up inertial deposition, radial droplet 
concentration profile). 

Two experimental findings (reviewed in ref. [4]) are 
used to further simplify the equations: (1) during 
reflooding all the droplets generated at the quench 
front are carried over with a velocity that is practically 
independent of their size ; (2) in most of the dispersed 
flows in channels, no radial dependence of the axial 
velocity has been observed over a major part of the 
cross section. 

The consideration of two phenomena can help 
understand the reason of the unique 'group' velocity 
of the droplet swarm. Firstly, momentum exchanges 
due to collisions may contribute to rendering the vel- 
ocities uniform ; this mechanism is likely to be impor- 
tant at low void fractions, when the droplets have a 
short mean free path between collisions. A second 
phenomenon, well known, but never taken into con- 
sideration, is the reduction of the drag force on a 
particle in the wake of another particle. Experiments 
performed with two spheres aligned along the flow 
direction [14], showed that the drag coefficient for the 
front sphere is somewhat above the standard value 
for a single sphere, whereas drag on the following 
sphere decreases several times. Thus, the following 
picture can be imagined for the droplets above the 
quench front: small droplets are highly accelerated 
until they fall into the wake of a large one; at this 

point, the drag on the large droplet increases and 
that on the small droplet decreases dramatically. Their 
velocities tend to equalize, until a random mis- 
alignment of the two droplets renders the interaction 
ineffective, and the two droplets are separated again 
until the next interaction. As the interaction effects 
are felt for distances between the centres up to several 
times the particle diameter--six times according to 
the calculations of Kleinstreuer and Wang [15] for 
vaporizing droplets-- i t  is clear that this effect can 
explain the equalization of the droplet velocities up to 
very high void fractions. These circumstances justify 
the : 

(d) One-dimensional calculation of an average 
unique axial velocity for all the droplets. 

The droplet spectrum is represented by discrete 
diameter groups. The calculation of the radial dis- 
tribution of the liquid phase is performed by tracking 
the trajectories of sample droplets in a cross-sectional 
plane moving with the axial velocity of the droplets 
(Langrangian approach). 

(e) The mechanism of collisions between droplets 
is not explicitly modelled, but ad hoc empirical pro- 
cedures (see Section 6.3) to avoid 'negative void frac- 
tions' are used, which mimic collisional diffusion from 
the center of the channel towards the periphery. 

Interaction between the droplets is not, however, com- 
pletely overlooked, since the closure laws for drag and 
interfacial heat transfer take into account the packing 
of the droplets. Other minor, conventional assump- 
tions are : 

(f) The droplets are at saturation temperature, T~. 
(g) At the quench front, the vapour velocity profile 

is fully developed and the vapour is at saturation 
temperature. 

(h) Radiation heat fluxes can be calculated using 
an effective droplet diameter [16]. The importance of 
the radiative exchanges has been shown by Peake [17] 
and Andreani [16]. 

4. VAPOUR GOVERNING EQUATIONS 

Because of the constant pressure and standard/M/y 
developed turbulent velocity profile assumptions, the 
momentum equation can be put aside and the con- 
tinuity and energy conservation equations suffice for 
establishing the velocity and temperature fields. The 
cross-sectional average form of the continuity equa- 
tion is used to calculate the average vapour velocity 
U_ in a tube of diameter D and flow area A : 

f 4 

(l) 

The vapour ax&l velocity distribution u:(r) is 
obtained using the imposed fully turbulent velocity 
profile (classical two-layer velocity distribution [18]). 
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The differential form of the 2-D continuity equation 
is then used to calculate the radial vapour velocity ur : 

I 0  (? 
r ~rr (r°~gpgur) + ~2 (O~gpguz) = F (2) 

where F is the volumetric vapour generation rate (kg 
n l  3S i). 

The vapour energy equation [19] is: 

r &(r~gpgHgu~)+ ~z(~gpgHgu:) 

1 ~. OT 
= r~r(r~gkt~r)+q'"r,d,g+FHg,~-q'"gi (3) 

where q'"gi is the interfacial heat transfer rate per unit 
volume (often denoted as - Qgl = Qig) (w m~3), kt the 
total vapour conductivity (molecular, k~ + turbulent, 
k~,~) and q"~ad.e the volumetric heat source due to 
radiation (W m-3). 

Radial velocities are small, but must be considered 
to conserve energy when equations (1) (3) are inte- 
grated numerically [16]. 

The turbulent conductivity ktu r is calculated, as 
usual [18]: 

8m 
ktu r ~ pgCp Prt~ 

where pg and c o are the vapour density and heat 
capacity, respectively. The eddy diffusivity ~ is set to 
zero in the laminar sublayer, whereas in the turbulent 
core a standard relation is used [18]. The turbulent 
Prandtl number Pr,~ is calculated from : 

{ 1 Prt~ ~ = max 0.9, ( R e -  RetO (4) 

where Ret~ is the value of the Reynolds number at the 
laminar-turbulent transition (arbitrarily chosen to be 
equal to 2100). The empirical equation (4) produces 
the correct value of Prtu ~ in the fully turbulent regime 
(Pr~u,-= 0.9 when Re > 10000) and, approximately, 
the value suggested by Lawn [20] in the proximity 
of the laminar-turbulent transition (Pr.,r "~ 1.5 when 
Re = 7000). For decreasing Re, an increasing Pr,u~ 
yields values of the wall-to-vapour heat transfer 
coefficients increasingly lower than those calculated 
from the Dittus-Boelter correlation, as suggested by 
experiments [20]. 

The reference temperature chosen for the cal- 
culation of the transport properties and the empirical 
technique used to implement in the calculation the 
entrance length effect are discussed by Andreani [16]. 

The initial and boundary conditions for equations 
(1)-(3) are: 

T(r, 0) = 7~, 

~TI OT 
~ g k m -  = q;' = q~'n--qrad--qdc ; ~ r  ~=o Jr r= D/2 . . . .  = 0. 

U:(0)=U: .0;  ur(D,z)=ur(O,z)  =O. 

~g(r, 0) = 1 - ~r(r, 0) 

where el(r, 0) is determined by the droplet hydro- 
dynamics discussed below. 

The convective heat flux q;' is calculated by sub- 
tracting the radiative heat flux q;'~a and the direct wall- 
to-droplet heat transfer q~ from the imposed heat 
flux qi',,. The radiative heat flux from the wall q;'ad is 
the sum of the radiative heat fluxes from the wall to 
the droplets, q;f, and to the vapour, q~.g. Radiation to 
the vapour is neglected as long as the optical thickness 
of the vapour is less than 20% of that of the liquid : 
for such conditions q'w'c is calculated by the two-flux 
method [17]. Otherwise, the network method [21] is 
used to calculate both q~g and q;f as well as the vap- 
our-to-liquid radiative heat flux @ (always very 
small). 

The influence of the liquid phase on the vapour 
temperature is through the five terms F, q"gi ,  ~g, q~c 
and q;f. The droplet concentration appears in all these 
terms and has to be determined by solving the 3-D 
droplet hydrodynamics equations. 

The Eulerian mesh used for calculating the vapour 
temperature field and the interactions between the two 
phases are shown in Fig. 2. Large droplets influence 
the field over several meshes : the way this is accounted 
for is described in Sections 6.3-6.4. 

5. DROPLET HYDRODYNAMICS 

For several two-phase flow regimes, a Eulerian 
approach is the most appropriate for treatment of the 
liquid phase. Unfortunately, many difficulties arise 
when droplet hydrodynamics in a conduit are studied. 
The droplets impact upon the wall and rebounce, so 
that two currents of droplets exist, one travelling 
towards the wall and a second travelling towards the 
centre. The treatment of particles travelling in 
opposite directions is basically incompatible with the 
continuum (Eulerian) approach, where a single 'aver- 
age' radial velocity must be defined. The Langrangian 
approach seems to be in this case a necessity, and 
is adopted here. A fully Lagrangian calculation is 
fortunately not necessary, as the axial velocity has 
been assumed to be independent of the droplet size, 
and of the radial coordinate (see Section 3). The aver- 
age axial droplet velocity W- is, thus, calculated in a 
fixed grid and depends only on z. 

Using the Lagrangian approach, the position and 
velocity of each group of droplets in the plane perpen- 
dicular to the tube axis (called from now on the r-q~ 
plane) have to be determined. Each 'computational' 
droplet represents a certain number of droplets gen- 
erated per unit time A?k in a multi-dimensional phase 
space. The total number of groups NGR depends on 
how many initial conditions are statistically sampled. 
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Fig. 2. Eulerian mesh for calculating the vapour temperature field and the interactions between the phases 
(the thickness of the arrows indicates the importance of the various heat fluxes). 

Since it is assumed that all droplets are generated at 
the same elevation z = 0 with the same initial axial 
velocity W:, the initial parameters that have a stat- 
istical distribution are the radial droplet position r, 
and the droplet radius R,. In reality, the radial velocity 
wk,r the angular position Ck and the tangential velocity 
w,.~ of the droplets have also distributions. These are 
treated in a simplified manner,  as discussed in Section 
5.4, to limit the number  of computational droplets 
and save computer time. 

Neglecting the velocity difference between the 
phases in the r -¢  plane as compared to the axial 
difference, the unique axial droplet velocity W: can be 
calculated from a cross-sectional average momentum 
balance in the fixed Eulerian grid. From the for- 
mulat ion of Ishii and Mishima [19], neglecting pres- 
sure gradients, internal stresses and friction between 
the liquid and the wall,t  and assuming that the dis- 
tr ibution parameter for the momentum flux (Cv, in 
the paper above) is equal to unity, one obtains : 

t The experimental results of Watchers and Westerling 
[22] showed that upon impact with the wall only the radial 
component of the droplet velocity is reduced. 

:~ The Sauter mean diameter is the correct length scale as 
the axial rate of momentum change of the liquid per unit 
volume in proportional to the sum of the drag forces acting 
on the droplets (ocZ~_~,l d~) and inversely proportional to 
the total liquid volume (ocZff'2~ d3). 

d 
~22((~-)pf W 2) = - -  (ocf)pfg-- ( r )  W= + (M~,-)= 

with : 

(M~c)_- = interfacial drag - 

(5) 

3 CD 
4 d32 (~f)pgUrg[ Urg[ 

(6) 

CD = drag coefficient (see Section 6.1) 

N G R  

Z 
k I 

d~2 - -  NC, R (7) 
Z 

k - - I  

U~,g = average relative velocity 
= ( u A r ,  z ) - ~ )  = U _ - W _  

( e l )  = average liquid fraction 

The characteristic droplet diameter used in equa- 
tion (6) is the Sauter mean diameter:~ (SMD or d32), 
that requires knowledge of the droplet size spectrum 
[23]. Equation (7) uses a 'flowing' droplet distribution 
(given from the number  of droplets h;k of group k 
which cross a plane per unit time), whereas the usual 
definition [23] is in terms of droplet concentrations 
('static' distribution). However, since it has been 
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assumed that Wk,: is the same for all droplet groups, 
concentrations and number  flows are scaled by a con- 
stant, independent of k:  therefore, either the 'static' 
or the 'flowing' distribution can be used to calculate 
the Sauter mean diameter. 

Since break-up and collisions do not take place 
during a calculational time step, and the evaporation 
rate is low enough, the variation of the droplet mass 
in the momentum equation in the r%b plane is neglec- 
ted. The position Xk--=(r~,q~k) and velocity 
w~ =- (Wk.r, Wk,O of each droplet group? in the r ~b plane 
(see Fig. 3) are calculated from : 

d 
- -  W c ~ x ~ -  , (8) 

d 
mk d t  w~ = F~,k + FL,I, + F~,k + Fr.k (9) 

where : 

• F~,k = component  of the drag force in the r -  4) 
plane ; 
• FV,k = thrust force ; 
• FL.k = lift force ; 
• F~,k = ' turbulent '  force in the r-~b plane. 

Equations (8)-(9) are valid as long as the distance of 
the centre of a droplet from the wall is larger than its 
radius. When contact occurs (rk = rk.~ = D / 2 - - R k ) ,  a 
simplified description of the collision dynamics is 

? Position and velocity are referred to the centre of the 
droplet, assumed spherical. 

employed : Fig. 4 illustrates how the impact dynamics 
is treated in the present model. It is generally accepted 
that the contact time Atc,k is approximately equal to 
the first-order vibration period of a freely oscillating 
droplet (e.g. ref. [24]) : 

Atck ~ /pfR~ (10) 

It is also known [24] that the behaviour of  a droplet 
impinging on a hot wall is mainly controlled by the 
so-called impact Weber number  : 

pfw~,rdk 
Wei.k -- (11) 

G 

The contact time (equation 10) is made dependent 
on the Wei.k (according to Kendall 's  results [25]), and 
is further reduced by a factor of 2 for unstable droplets 
(i.e. when We~,k > Wei,cr, as discussed below), to take 
into account the shorter contact time of a breaking 
droplet [22]. 

If We~., < We~.cr, the droplet assumes the shape of a 
flat globule (Fig. 4) and slides on the wall at the 
average droplet velocity W~. The radius of the contact 
area increases, reaches a maximum Rk.m (calculated 
from an equation developed by Kendal [25]), and 
decreases, until the time the droplet takes a quasi- 
spherical shape again and bounces off the wall. 

The droplet radial velocity is first decreased linearly 
to zero, and after the position of the droplet centre 
reaches its maximum rk.m, it is inverted. At the end of 
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the contact time, the radial velocity [Wk,r]re s c a n  be 
calculated using the experimental results presented 
graphically by Bolle and Moureau [26]. In their exper- 
iments, the impact was normal to the surface, and 
We,.cr ~ 70. In the present model, the value of We~,c~ 
is assumed to depend on the impact angle (see Section 
5.3.2, below). 

During the contact time, the tangential velocity wk.t 
is not updated, and at the end of the contact it is 
randomly assigned a value within 10% from that at 
the beginning of the contact (slightly off-normal 
bouncing). 

5.1. Forces actin 9 on the droplets 
Analytical expressions for the forces acting on the 

droplets in the r-q~ plane are given in this section. An 
analysis of the order of magnitude of these forces and 
of the stopping distances for a 1 mm droplet under 
the typical conditions investigated in the present study 
is given by Andreani [16]. It was concluded that thrust 
and lift forces are equally effective in preventing drop- 
lets from depositing on the wall. They can stop, 
however, the movement of the droplet in the r-q~ 
plane, only after it has crossed the tube a few times 
and lost most of its initial r, 4~ momentum under the 
effect of the drag force. 

Drag force. The first term on the right hand side of 
equation (9) is the projection of the drag force acting 
on the droplets of group k on the r -0  plane. For each 
droplet group the drag force is calculated as : 

Up. k = I 2pgCDAd, k l u - W  k l ( u - W  k) 

and its component in the cross-sectional plane is : 

F~).k = ~pgCDAd.klu--wkl(Uc--w~) (12) 

where the drag coefficient is calculated according to 
the prevailing droplet flow regime (see Section 6.1). 

Turbulent force. The effect of turbulence on the 
particles is taken into account by considering the ran- 
dom fluctuations of the vapour velocity field and of 
the resulting additional drag : such a 'turbulent' force 
is calculated according to a technique devised by 
Dukowicz [27]. For the relatively large droplets which 
are mostly encountered in the post-critical-heat-flux 
region at low pressures, such a force was found to 
play a minor role [16]. 

LiJt force. A particle moving in a fluid having a 
non-uniform velocity experiences a lateral lift force. 
Although Saffman [28] derived an expression for the 
lift force under very restrictive conditions (small par- 
ticles, low particle Reynolds number, free uniform 
shear flow) many researchers have applied his analysis 
to explain the lateral migration of small particles 
across streamlines in Poiseuille flow and other boun- 
ded flows. This is mainly because there is no other 
theoretical result for the lift on a particle due to a 
velocity gradient. Rizk and Elgobashi [29] justify the 
use of Saffman's expression in the wall region, con- 
sidering that in vicinity of the wall the fluid velocity 

distribution is linear and, thus, a particle is subjected 
to a uniform shear. This point of view is supported by 
the experimental results of Hall [30], who showed 
that measured lift forces on large stationary particles 
(particle Reynolds number up to several hundreds) 
suspended at different distances from a wall are mat- 
ched within a factor of 2 by Saffman's theoretical 
expression. Therefore, the Saffman expression for the 
lift force was also used in the present work : 

/ du du. 
FL., = 1.6d~ ~/Pg#g~-r-[u_-- W:]n (13) 

where n is the unit vector perpendicular to the wall. 
The direction of the lift force is such that a sphere 
lagging behind the fluid migrates away from the wall, 
while a sphere leading the fluid migrates in the 
opposite direction. 

In the present analysis the lift force is allowed to 
act on all the droplets with diameter smaller than the 
tube radius, independently of their position, as long 
as the gas Reynolds number is lower than l04, i.e. 
below the value for fully turbulent flow. 

Thrust force. As observed by Ganic and Rohsenow 
[8], an additional force is associated with drop motion 
in dispersed flow film boiling: because of the tem- 
perature gradient in the thermal boundary layer, the 
side of the droplet closer to the wall evaporates at a 
higher rate and vapour is produced at higher velocity 
than on the 'cold" side. This produces a reaction or 
thrust force which tends to prevent the deposition of 
the droplet on the wall. 

Lee and Almenas [9] consider as thermal boundary 
layer the thickness of the laminar-like region (the 
region where the motion of the particles is controlled 
by forces proportional to the mean shear). They show 
that, already for droplets of a few tens of microns, 
such a region extends over the whole tube area, so 
that, for droplets sufficiently large, a reaction force 
proportional to the local temperature gradient is to 
be expected at any distance from the wall. Moreover, 
the authors proposed to use for the velocity of the 
evaporating vapour the r.m.s, velocity of vapour mol- 
ecules at saturation temperature (VK). This produces 
a sufficiently large thrust force expressed by : 

hi, k 1~ ~ d T 
FT.~ = ( t ' K ) ~ g d i  dr n (14) 

where h~.~ is the interfacial heat transfer coefficient and 
(VK) is calculated from the classical kinetic theory of 
gases : 

(v) (vK)  = c,, ~15) 

where KB is the Boltzmann's constant (1.38062 x 10 -23 
J K ~) and m is the mass of a gas molecule 
(2.9916 x 10- 26 kg for vapour). The factor C,, ( = 0.64) 
is introduced to consider the component of the vel- 
ocity of the gas molecules perpendicular to the wall. 
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5.2. Droplet radius reduction rate 
Making the usual assumption that all the heat trans- 

ferred to a saturated droplet, qk, is used to produce 
vapour, the volume loss due to evaporation may be 
written as : 

d 4 ~ d qk 
Vk = ~R~ dt  Rk = -- --p,Hrg 

from where : 

d qk 
d tRk  - 4~R~prHfg - K~,k. (16) 

The evaporation rate, or alternatively the droplet 
radius reduction rate K~.k is the sum of three con- 
tr ibutions:  radiation, interfacial heat exchange with 
the vapour and direct heating from the wall. Thus : 

K~,k = K~,~ + K'e,~ + K~,~ (17) 

The contribution due to radiation is calculated by 
assuming that the heat E~ ~d absorbed by a droplet 
during its total residence time in the Eulerian mesh Az 
is independent of its radial position. The partit ion of 
the total power radiating from the wall among the 
droplet groups is, thus, only dependent on the droplet 
size. In the present model, the radiative flux is trans- 
ferred to each group in proport ion to its volumetric 
flow rate : this choice has been discussed by Andreani  
[16]. Therefore, E~ ~ is equal to the total energy rad- 
iating from the wall times the ratio between the vol- 
ume of the droplets and the total volume of liquid 
that has crossed the computational mesh Az in the 
time At : 

where : 

NGR 

k = l  

E~f ,, . V~ 
= qwf A A w ' I 2  r (18) 

= total liquid volumetric flow (m 3 s ~) 

AAw = area of the wall in the Eulerian axial mesh 

= gD Az 

E~; ~d Vk q ~  _ - . . 
At -qwf  AAw l?r 'At 

Thus : 

A z  
A t = -  

W_ 

where 

is the transit time of the droplets in the mesh Az, and 

K~.~ = q'r" AAw . R~ _ ~zDq,~f" W__. R~ 
12r" pr" At" Hfg 3 -  l)r" pr" Hfg 3 

The contribution due to inter]acial heat transfer is 
easily derived : 

q~"' = h~.k " Ak "(Tell- T~) (22) 

where Ak is the surface area of the computat ion drop- 
let. Therefore : 

K,.r~ __ h~,k "(Tefr- T~) (23) 
pf" Hrg 

The 'effective' vapour temperature Te~ that appears in 
the equation above is a simple average over the radius 
in the radial meshes covered by the droplet : 

1 £ .... 
r~.. - T(r)  d r  (24) 

rt~ 'L - -  r k ' R  k R 

where rk,L and rk,R are the 'limits' of the droplet defined 
further in Section 6.3. 

The droplet is assumed to exchange heat directly 
with the wall when the distance of its centre from the 
wall is smaller than its radius. The effectiveness of the 
contact e~k is defined as the ratio between the heat 
exchanged E~ ~ and that necessary to evaporate com- 
pletely the droplet : 

E~ ~ 
ek - (25) 

p f "  H r g "  V,~. 

If the heat transfer rate during the contact time At,.k 
is considered constant, the heat exchanged per unit 
time is : 

and 

q de __ gl, 
Atok pr'Ht~" V~ (26) 

ek " Rk. (27) K~,~ = 3"Atck 

The effectiveness of the impact on a dry wall (wall 
temperature Tw higher than the quench temperature) 
is evaluated from the equation derived theoretically 
by Kendall  [25] for heat transfer to the bottom of a 
flat cylindrical drop, multiplied by a factor 1.5, to 
account for the additional heat transfer to the sides 
[31]. The Kendall  expression yields increasing values 

(19) of the effectiveness for increasing values of Wei,k and 
T~; e~ is in the range between 0.001 and 0.003 for a 
wide range of conditions. However, Ueda [24] found 
much higher values (0.005~).007) at low wall tem- 
peratures, i.e. for Tw up to T~+ 120K. Thus, an interp- 

(20) olation procedure was developed [16] combining the 
high effectiveness at low wall superheating (close to 
the quench front) of Ueda with the low effectiveness 
calculated from Kendall 's  equation for high Tw. The 
'break'  point was defined by the quench temperature 
calculated from the correlation of Yao and Cai [32], 

(21) where it depends on the impact angle 0,.~ (Fig. 4). 
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5.3. Droplet break-up 
The inclusion of droplet break-up in a dispersed 

flow film boiling model is one of the most original 
contributions of this investigation. Some experimental 
evidence suggests that break-up phenomena can occur 
over significant portions of the total length of the 
channel. The few models that take this process into 
account assume that capillary break-up splits the par- 
ent droplet in two pieces, or define the Sauter mean 
diameter as function of the distance from the quench 
front [33]. The visual experiments of Ardron and Hall 
[33] have shown that some capillary break-up does 
indeed take place, and this process leads to the split- 
ting of slender liquid globules (or filaments) in a few 
large fragments. More often, however, the large drop- 
lets undergo fragmentation by aerodynamic break- 
up, and the most common break-up mode (the bag 
mode) produces a swarm of small droplets, which can 
be characterized by an upper-limit-log-normal dis- 
tribution. 

Though there is no explicit evidence that droplets 
flowing above the quench front break upon impinging 
on the wall, it is quite likely that this happens for 
big droplets having a sufficiently large radial velocity. 
Several experiments [22] have shown that droplets 
having sufficient radial momentum splatter onto the 
wall and disintegrate into small fragments. 

Although break-up mechanisms, other than the 
ones mentioned here, are also known (splitting upon 
interaction with a turbulent fluctuation, break-up 
after collision), these are not expected to be important 
and only three break-up modes are considered in this 
work : 

• aerodynamic break-up ; 
• wall-impact break-up ; 
• capillary break-up. 

5.Yl. Aerodynamic break-up. No detailed mech- 
anistic models are available for the aerodynamic 
break-up process, but a few experimental inves- 
tigations [34, 35] provided useful information. The 
volume spectrum of the droplets generated from a 
fragmentation process is generally well approximated 
[36, 37] by an upper-limit-log-normal distribution : 

d V _  6_e #.~_ (28) 
dy x/~ 

with : 

d 

and h being the distribution coefficients, which define 

t The volume median diameter dso is defined from the 
condition that 50% of the liquid volume is carried by droplets 
of d < a~0. 

:~ The droplet being relatively large, it does not make much 
sense to consider the local vapour velocity. 

the volume median diameter]" ds0 and the deviation 
about the mean, 6, respectively : 

= _ _  
dm - d5o . V {dm-d3~\7 12 

4 In . . . . . .  
:.32 )] 

where dm is the diameter of the largest fragment. The 
upper-limit-log-normal distribution is thus deter- 
mined by three characteristic sizes (ds0, d~2 and din). 
Using the experimental findings discussed by Pilch 
and Erdman [35] and observing that the ratio between 
the Sauter mean diameter d3, and the d,~, in the tube 
reflooding experiments of Ardron and Hall [33] was 
in the range 1/3 1/2, it is assumed that : 

d.L g[) ~ . , da.32 

where the subscript 'a '  refers to aerodynamic break- 
up. Under these assumptions, the value of the largest 
droplet diameter after break-up dd.m fully characterizes 
the spectrum of the daughter droplets. 

The value of dd,,~ is not known with precision, but 
it has been reported to depend on the Weber number : 

W e  Pg U 2 g d  

f7 

It ranges between 0.1 and 0.2 times the diameter of 
the parent drop for We ~ 10-20 [38]. For  each com- 
putational droplet k that breaks up, the value 
d,.m: = 0.2d~ was adopted in this study. 

The break-up process is not instantaneous, and 
large deformations of the droplets are required before 
the fragmentation occurs ([35], Fig. 5). Break-up 
times depend on the Weber number [34] and, at low 
We, are of the order of a few tens of milliseconds. 
Because of this delay in fragmentation, the large drop- 
lets travel a certain distance before disintegrating, with 
obvious consequences on the heat and momentum 
transfer mechanisms. There is general agreement [38] 
that the non-dimensional break-up time (or distance 
travelled by the droplet) 

o/Z, c / ,  ~ 2 / '~  .......... (V--  W_)dt 
tBu,k = X] p,- dk 3, ...... 

(29) 

lies in the range 2.5 6.5, tcr,,k being the time when 
Wek > Wecr.k. On the contrary, the value of the critical 
Weber number for the different aerodynamic break- 
up modes is still a matter of discussion. Published 
values vary between 2.25 and 22, since the stability of 
the droplets is also influenced by their acceleration 
rate [38] and impulsive forces [39]. Parametric studies 
are thus necessary (Part II). The break-up process is 
represented in the model in the following way (Fig. 
5). 

(1) The droplet of diameter dk reaches the unstable 
condition when its Weber number (calculated for all 
droplet groups using the unique axial droplet velocity 
W_ and the average + axial vapour velocity U:), Wek 
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Fig. 5. Observed (left) aerodynamic break-up in a tube [33] and its representation in the model (right). 

= p g ( U  z -  W.)2dh/ff, reaches a critical value which is 
input to the model (base case Wecr = 12). 

(2) For each droplet that has reached this critical 
condition, the cumulation of a non-dimensional time 
t* (defined by equation (29), with tbreak-uv.k replaced by 
the current time) is initiated. The deformation process 
(Fig. 5) is described in Section 6.3. 

(3) The non-dimensional break-up time tBv,k is ran- 
domly chosen at the beginning of the calculation from 
a uniform distribution within the range 2.5-6.5. 

(4) When t* > tBt;,k break-up occurs. 
(5) The droplets generated by break-up are divided 

in four groups: the upper-limit-log-normal distri- 
bution, equation (28), is used. The maximum diameter 
of the fragments d,,m.k is again equal to 0.2 dk. 

(6) The four newly generated droplets are ran- 
domly placed within the space occupied by the parent 
drop and their radial and tangential velocities are 
those of the droplet just before break-up. 

5.3.2. Wall-impact break-up. Experiments where 
droplets are forced to impinge normally (or at small 
angles from the perpendicular) on the wall, show that 
for We,.k < 30, practically no break-up occurs. If We~,~ 
(equation 11) is larger than We,.~r ~ 50-80, the droplet 
forms a thin liquid film that disintegrates in tiny drop- 
lets soon after the contact (Fig. 6); in this case the 
contact time is much shorter than that given by equa- 
tion (10). In an intermediate range of We,.k, a certain 
fraction of droplets break up only after moving away 
again from the hot surface, ejecting a few droplets 
only. 

Yao and Cai [32] observed that, for an impact angle 
Oi.k smaller than 6& (see Fig. 6) Wei,cr can be reduced 
dramatically. Their value of the critical impact Weber 
number adopted here is given by : 

Wei.cr,k = 12.89+0.850i.k--0.00530~k (30) 

where O~,k is in degrees. The details of the break-up 
process are not known; therefore it is assumed that 
the largest fragment has a diameter d~,m corresponding 
to the minimum thickness of the film bk,,~ (Fig. 6) 
during the splattering process. The fragment size spec- 
trum is assumed to be described by an upper-limit- 
log-normal distribution with SMDi = 1/3(d~.m) and 
d,.5o = l/2(d~,m) by analogy with the aerodynamic 
break-up process discussed above. 

5.3.3. Capillary break-up. Capillary break-up, 
which leads to the fragmentation of the parent drop 
into a few large fragments (Fig. 7), has been intro- 
duced into the model to get a reduction of the average 
droplet size above the quench front also under low 
massflux conditions. Under such conditions, the large 
droplet (several mm) expected at the quench front (see 
Section 5.4) are always stable against both wall and 
aerodynamic break-up. Thus, unless another break- 
up mechanism is postulated, the droplets decelerate 
(and the void fraction decreases) up to locations very 
far from the quench front. This unrealistic situation 
can be avoided by reducing the Sauter mean diameter 
of the droplet population by capillary break-up, so 
that the droplets can be carried-over, as physically 
expected. Moreover, this reduction was necessary to 
get agreement between calculated and experimental 
wall and vapour temperatures, as discussed in detail 
in the companion paper (Part II). 

Obviously, another solution would have been to use 
a smaller initial Sauter mean diameter for low mass 
flux conditions: no correlation was found, however, 
which can produce either large or small initial Sauter 
mean diameter, depending on the initial conditions 
([16] ; see also Part II). 

Capillary break-up is expected to be caused by the 
impulsive forces acting on the droplets immediately 
above their entrainment location, where they are sud- 
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Fig. 6. Observed (left) wall impact break-up on a flat wall (reproduced with permission from Elsevier 

Science Ltd) and its representation in the model (right). 

denly exposed to a high velocity gas field ; these forces 
decay to zero when the condition of mechanical equi- 
librium is reached. It is further assumed that such 
a mechanical equilibrium condition is reached (and 
capillary splitting terminates) when the Sauter mean 
diameter of the droplet population reaches a mech- 
anical equilibrium value, SmDeq, obtained from a bal- 
ance between drag and gravity forces. Capillary break- 
up is modelled according to the following empirical 
procedure (summarized in Fig. 7) : 

(1) The equilibrium diameter SMD~q is calculated 
by balancing gravity and drag forces acting on 
a droplet, using the average gas and liquid vel- 
ocities at the quench front. The largest droplet 
in the equilibrium distribution is assumed to 
have dm,eq = 3SMDeq. 

(2) An equilibrium We b equal to twice the initial 
Weber number Wem.o of the largest droplet (of 

diameter din,0) at the quench front is calculated. 
The value of Web is empirically limited in the 
range 1-2.5. The same range of values for the 
critical Weber number was suggested by 
Kataoka et al. [40] for turbulent break-up. 

(3) As soon as a droplet reaches the condition 
Wek > Web, it produces two groups of daugh- 
ters. The volume distribution of the fragments 
is again an upper-limit-log-normal distribution, 
with the maximum at dm.eq given above the 
SMDc = 1/3(dm.eq), dc.50 = 1/2(dm,eq). Addi- 
tional details are given in Fig. 7. 

Capillary break-up is not allowed if Were, o is within 
30% from Wecr, as, under these circumstances, aero- 
dynamic break-up is the prevailing fragmentation 
mechanism. However, for initial radial droplet vel- 
ocities sufficiently high and producing wall-impact 
break-up, the procedure above has been slightly modi- 
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Fig. 7. Observed (left) capillary break-up in a tube [33] and its representation in the model (right). 

fled to ensure a continuous dependency of the equi- 
librium droplet diameter on the initial radial velocity 
[16]. 

In all the experimental runs analyzed, the capillary 
break-up process was complete within 30-50 cm from 
the quench front. Capillary break-up has, however, 
been seldom observed [33] and its importance here is 
probably exaggerated. The model is not intended for 
general use, as its parameters resulted from an ad hoc 
data-fitting approach rather than from experimental 
observations. 

5.4. Initial conditions 
A number of flow conditions must be specified at 

the upstream boundary of dispersed flow film boiling. 
Their specification is discussed in this section. 

5.4.1. Initial size and position of the droplets. From 
their visual experiments, Ardron and Hall [33] con- 
cluded that the shearing off of large waves from the 
liquid film below the quench front was the most 
important entrainment mechanism. The Sauter mean 
diameter of the droplet population was calculated 
from the volume of water carried by each individual 
disintegrating wave (travelling with speed cw) as : 

SMDo - C [_~cw j [_pgj~j 

t The total number of computational droplets (NS x ND) 
depends on the diameter of the largest droplet and is in the 
range 100 170. 

where A is the flow area and j denotes volumetric flux. 
Using C = 0.52 and cw = 2 m s ~ (the observed wave 
velocities were in the range 1.5-3 m s-~), Ardron and 
Hall obtained a fairly good fit of their experimental 
results (x = 0.05-0.25, G = 19-74 kg m 2 s-,). 

Equation (31), developed from experiments at 
atmospheric pressure, is used in this investigation to 
calculate the initial Sauter mean diameter for all con- 
ditions investigated (pressure up to 7 bar). For the 
conditions analyzed (see Part II), SMDo is in the range 
between 2 and 8 mm. The maximum size of the drop- 
lets is given using reasonable limits : 

dm.o = min(0.95D, 3SMDo) (32) 

Having determined SMDo, an upper-limit-log-nor- 
mal distribution for the droplet volume distribution, 
equation (28), is assumed. This happens to fit 
adequately the data of Ardron and Hall. The droplet 
size spectrum is divided in NM segments at 1 mm 
intervals. The (assumed) smallest droplet diameter in 
the spectrum (d,, = 10 pm), sets a lower limit to the 
logarithmic distribution. The first segment (10 vm 
1 mm) is further subdivided in four ranges at 100, 250, 
500 and 1000 #m. The total number of segments NS 
is, therefore, equal to NM + 3. 

For each initial droplet radius Rk.0, a number ND 
of computational particles (ND = 10 in the reference 
calculations) is used; this is to distribute the radial 
position of the droplet centres rk,o in the cross section. 
The volumetric flow rate l?k.0 assigned to each com- 
putational droplet? is then : 
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I2~o = I?f ' f~(r) ' fz(R) k = 1 . . . . .  NGR (33) 

where l?f is the total volumetric liquid flow rate and f~ 
and f2 are distribution functions. The exact definition 
off~ is not important since the droplets are rapidly 
redistributed; J] is taken to be equal to l IND. The 
function f2 is obtained from : 

fi'i ./2 = , ,-d~'dY; i =  1 . . . . .  NS 

where dV/dy is given by equation (28). The number 
flux of droplets of group k, A?k, can be calculated from 
the volumetric flow rate l?k.0: fractional numbers of 
droplets are allowed. A?k does not change along the 
trajectory of the droplet, as long as break-up does not 
occur. 

5.4.2. Axial velocity. The initial axial velocity of all 
the droplets is assumed to be equal to the speed of the 
fastest growing wave c,  [41] on the liquid film below 
the quench front. The average speed of the film W_- 
is found from the void fraction below the quench 
front, (~g) , calculated for the quality x below the 
quench front from a steady-state heat balance, using 
the drift flux correlation for churn-turbulent flow for 
Ishii [42]. Ishii's correlation was preferred to other 
alternatives [43] because it was able [16] to predict the 
void fractions below the quench front measured by 
Kawaji in tube reflooding experiments [44]. 

The quality above the quench front, x +, is cal- 
culated by a standard procedure taking into account 
the sensible heat released from the wall to the fluid 
during the quenching process [45]. 

The droplet axial velocity is assumed not to change 
between the elevations just below and above the 
quench front, so that from W~.0 = W_ = cw and x +, 
U:.o =- U :  and (~g.0) - (~g)+ can also be calculated. 

5.4.3. Radial velocity. Since there is no information 
about the initial radial velocities of droplets generated 
during a reflooding process, it is reasonable to assume 
that a reference value W~.A for the initial radial velocity 
may be obtained from experimental observations in 
adiabatic annular flow. Andreussi and Azzopardi [46] 
observed that droplets were ejected in the radial direc- 
tion with a velocity proportional to the friction vel- 
ocity of the gas (air). No correlation was found 
between radial velocity and droplet size. The relation- 
ship found by Andreussi and Azzopardi reads : 

w,.A = 11.1 U* ~ (34) 

In the present model, the modules of the droplet 
initial radial velocities wk.~ are taken from a uniform 
distribution between zero and a maximum value 
w~.m = k~Wr,A, where k~ is a multiplier whose effect has 
to be investigated by a parametric study. Since the 
droplets are initially distributed over the entire cross 
section, it is further assumed that half the droplets 
travel towards the wall and the others towards the 
centre. 

5.4.4. Tangential velocity and angular position, 
Experimental data on the ejection angle from the wall 
in the r -~  plane are not available. It is, thus, assumed 
that w~., has a small value, randomly chosen from a 
uniform distribution between zero and 0.1 wk.r. Such 
an arbitrary choice is legitimate, as it has a negligible 
impact on the results, as long as central forces act 
on the droplets (see Part If). The calculations were 
performed for wk.~ ¢ 0, since when most of the tra- 
jectories do not pass through the centre, the cal- 
culation time is reduced. Because of the axi- 
symmetrical nature of the processes considered, the 
initial angular position q%k,0 of a droplet has no real 
significance. It is randomly taken from a uniform dis- 
tribution between 0 and 2n. 

6. INTERACTIONS BETWEEN THE PHASES 

6.1. Drag coeJficient 
The interfacial drag coefficient is calculated accord- 

ing to the flow regime (viscous or distorted droplets) 
by well established correlations [19], as long as the 
droplets are accelerating. For  decelerating droplets, 
the much larger drag coefficients obtained from cor- 
relations for fluidized beds are used [47, 48]. Indeed, 
the axial increase of packing in a decelerating droplet 
cluster implies contacts between the droplets. 

This procedure does not allow large droplets at the 
quench front to develop negative axial velocities W.. 
As a consequence, for low initial vapour velocities, 
the droplet velocities W__ (and thus also (~g)) remain 
constant (and low) above the quench front, up to the 
elevation where the increased vapour velocity and the 
reduced Sauter mean diameter allow acceleration of 
the droplets. This logic is imposed by the necessity to 
consider the large (experimentally observed) droplets 
at the quench front : the more likely physical situation 
of droplets oscillatin9 above the quench front cannot 
be represented exactly by a steady-state model. 

A reasonably smooth transition from decelerating 
to accelerating flow is achieved by iterating the cal- 
culation of the axial velocity until compatibility 
between velocity difference Ufg and CD is obtained. 
The logic for selecting the various correlations is dis- 
cussed by Andreani [16]. 

6.2. lnterJacial heat transJer coefficient 
The interracial heat transfer coefficient for a single 

droplet can be calculated by the correlation of Beard 
and Pruppacher [49]: 

ks 05 h0.~ = ~g(l.56+0.616Red Pr~ '3) (35) 

where Red =-pg[U-w[d/ktg is the droplet Reynolds 
number and Prg ~- CplAJkg the Prandtl number. The 
vapour properties are evaluated at Ten', equation (24). 

Taking into consideration that interfacial heat 
transfer is reduced by mass efflux and that the evap- 
oration rate for droplets in a cluster is lower than for 
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Fig. 8. Partition of the droplet volume among the Eulerian meshes : (a) 'normal case' : (b) droplet in contact 
with the wall ; (c) unstable droplet during aerodynamic break-up ; (d) artificial partition to avoid ~g < ~[im 

in the central cells (see text). 

isolated droplets, the interfacial heat transfer 
coefficient for each droplet group k is calculated as : 

hl,k = ho.k ",~h,k " f ,k (36) 

where the 'shielding' factor fsh,k is calculated from 
the correlation of Hoffmann and Ross [50] and the 
interaction coefficient f,k is obtained from the cor- 
relation of Miura et al. [51]. 

6.3. Droplet volume partition among the meshes 
crossed 

The fraction of liquid volume present in each Eul- 
erian cell at a given time can be calculated from the 
radial position of each droplet given by equations (8) 
and (9). It is further assumed that the droplet 'extends' 
by the same length lk towards the centre ('right bound- 
ary' rk.R = rk--lk) and towards the wall ('left bound- 
ary' rk,L = rk+lk) ; lk is the droplet radius (Fig. 8(a)), 
unless the droplet is in contact with the wall ; in this 
case lk is the distance between its centre and the wall 
(Fig. 8(b)). The volume fraction of each droplet is 
shared among the cells 'covered' by the droplet, pro- 
portionally to the participating spacing of the radial 
mesh, Ark.l (Fig. 2). 

The droplet right and left boundaries are calculated 

differently if the void fraction is very low or if the 
droplet undergoes aerodynamic break-up. 

The droplets which undergo aerodynamic break-up 
are deformed before breaking and cover a wider cross 
sectional area than spherical droplets (Fig. 8(c)). The 
deformation history of the aerodynamically unstable 
droplets implemented in the model reflects the behav- 
iour observed for droplets breaking in the bag mode 
[34]. The value of r~,L is limited to the tube radius. 
Details are given in Fig. 8(c) and by Andreani [16]. 

Because of the centripetal effect of thrust and lift 
forces, the droplets tend to group in the centre of the 
tube (see Part II). As collisions are not taken into 
account in the model, the liquid volume in the central 
meshes can exceed the volume of the mesh, resulting 
in 'negative void fractions'. In order to avoid this 
unrealistic condition, the droplets are assumed to 
extend towards the wall as much as necessary to pre- 
vent their volume fraction from becoming anywhere 
higher than the value ~f.m ~ 0.6 obtained for closely 
packed rigid spheres [19]. Thus, the lowest admissible 
void fraction is ~lim = 1 --~r,m- An iterative procedure 
is employed to 'stretch' the left boundary towards the 
wall for all droplets whose centres lie in a mesh where 
%~ < ~d, (arbitrarily taken as ~tm+0.2). The stret- 
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ching of rk,t extends up to the first Eulerian mesh 
where ~g,~ > c~a, (Fig. 8 (d)). This stretching imposes 
additional iterations regarding the radial position of 
the droplets. 

Resorting to such a 'stretching' of the droplets close 
to the centre maintains the void fraction above ~lim 
and provides a mechanism mimicking liquid mass 
diffusion. In reality, at low (C~g), the diffusion of liquid 
towards the periphery of the tube is controlled by 
the collision rate and the coalescence and break-up 
phenomena. Binary collisions can result in elastic or 
inelastic bouncing, permanent coalescence, temporary 
coalescence or shattering. The outcome depends on 
both the collision angle and the kinetic energy of the 
colliding droplets [52]. The description of the real 
collision-coalescence phenomena at high liquid 
fractions requires accounting for all the possible 
events and is beyond the scope of the present 
work. 

The interaction region of a droplet with the vapour 
field is calculated considering its corrected boundaries. 
It is clear that the results of analyses where the liquid 
fraction in some nodes remains close to ~-~,m over a 
large portion of the test section have to be considered 
with some caution. Parametric studies of the influence 
of ~.,,, are presented in Part II. 

6.4. Vapour 9eneration rate and distributed heat sink 
Once the evaporation rate for each computational 

droplet K~,k, equations (17)-(27), is known and the 
volume fraction of the droplet in cells 'covered' is 
assigned, the total volumetric vapour generation rate 
can be calculated. From equation (16), the variation 
of the droplet radius during its residence time At in 
the axial mesh Az, as well as its total loss of volume 
A V~ can be determined. 

The volumetric vapour generation rate in the Eul- 
erian cell between r~ ~ and r~ is the sum of all the 
contributions from the droplets that have resided 
some time Atkj during At in that cell, i.e. the droplets 
for which the segments (r~_ ~, r~) and (rkL, rk,R) overlap 
for a certain time. Dividing by the volume V~ of that 
cell: 

NGR 

F~ - - -  Pr  ( 3 7 )  v, 

where A V~.~ is the volume lost by droplet k in the Ith 
Eulerian radial mesh. A somewhat different dis- 
tribution scheme is applied to the vapour generated 
by wall contact (contribution due to q~). Since it is 
generated on the wall, this vapour source is equally 

divided among the cells found between the centre of 
the droplet and the wall. 

The distributed interfacial heat sink is calculated in 
a similar way : 

-QigJ  = q'~gi,t = 

NGR NGR 
E int ,  . " qk.I alk.! N~ ~ AEk.," ¢ ,  

k = l  k - I  

v, 

(38) 

where q~} is the interfacial heat transfer rate from 
droplet k in the Ith cell (fraction of q2~t given by 
equation (22)) and AEkj  is the heat exchanged with 
the vapour during its 'radial' residence time Atk,~ in 
that cell: 

AEk,I = hi,~ " Ak.t" Atkj  "( TI-- T~) (39) 

A,.~ being the fraction of the surface area of the droplet 
k that is intercepted by mesh I; this is approximated'~ 
by gd~ • Ark /d~ 

6.5. Direct wall-liquid heat transfer 
The total direct heat flux from the wall to the drop- 

lets is the sum of the contributions from all the drop- 
lets that manage to touch the wall. The contribution 
of each group k is calculated taking into account the 
group effectiveness (Section 5.2) and the contact time, 
A t~,k (equation 10). The total amount of heat extracted 
by a droplet via direct contact is distributed to the 
axial meshes involved in proportion to the residence 
time ~tk, J of the droplet in each mesh J. Thus, the 
direct-contact heat flux for the axial mesh J is : 

;~r(iR E dc . /~  . A t  l 

q~ = ~" A t ~  AA~ k = l  

,Vo, Hrg " N~ " Vk " At~. j 1 
= ~ ~;*'P~" (40) 

k = i At~.k AAw 

where A? k • E~ c is the total power extracted over the 
contact time. 

6.6. Voidji 'action 
It can be shown [53] that the liquid fraction in each 

radial Eulerian mesh I (having volume VI) can be 
calculated as the volume occupied during Atk.~ by the 
droplets, divided by Vt. The local void fraction in 
mesh 1 becomes : 

NG R 

k - . I  

%1 = 1 V/ (41) 

t Since Ak.~ changes during Atkj, the actual value of AE, j 
is calculated using: AkjAtkj  = Z~L~ Akj,pdt, where dt = 
At/Np is the time step used for the integration of equations 
(8), (9). 

+ The actual calculation uses VLI" Ak.l = Z~i; f V,,l,p dr. 

where k].l is the fraction of the volume of droplet k 
that is intercepted by mesh L Using again the par- 
ticipating thickness approach, it is approximated:~ by 
VkAr~,ffd~. Equations (37), (38), (40) and (41) comp- 
lement equations (1)-(3), to determine the vapour 
temperature field. 
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7. NUMERICAL IMPLEMENTATION 

The model has been implemented in a computer 
program: its numerical features are outlined in the 
present section; more details are given by Andreani 
[16]. 

A two-dimensional net is defined for the numerical 
solution of the vapour conservation equation. The 
size of the radial meshes is large in the turbulent core 
(up to 1/10 of the tube diameter) and gradually 
decreases to the small values required for the laminar 
sublayer, where the radial meshes are equispaced. The 
calculations begin at the quench front and advance 
one axial mesh to step Az at a time. Since all droplets 
have the same axial velocity, Az corresponds to an 
axial droplet transit time At = AzlW:. The size of the 
axial step is controlled by the program [16]. 

The average axial velocity of the droplets is cal- 
culated explicitly only at the bottom of each axial 
increment from equation (5), since it varies very 
slowly. The drag coefficient and Sauter mean diameter 
are considered constant during the advancement, so 
that the discretized form of the equation (forward 
differencing) results in an algebraic equation of second 
degree, which can be solved directly. The calculation 
is iterated with respect to the drag coefficient, due to 
the influence of the average void fraction on CD. The 
axial velocity is not involved in the global iterative 
process (external loop, see below), i.e. it is calculated 
only once for each axial advancement. 

The numerical scheme used to solve the set of equa- 
tions (1)-(3) and (8)-(9), is based on two iterative 
procedures: an external loop, where the droplet 
hydrodynamics is calculated with a fixed vapour field, 
and an internal loop determining the vapour field with 
droplet variables from the previous external iteration. 

To calculate the vapour field, the total vapour gen- 
eration rate and the new vapour flow rate are first 
established. Using the imposed two-layer velocity pro- 
file and the calculated vapour temperature and density 
distributions, the new average gas velocity and its 
radial profile are then established. Iterations are 
required. 

Internal loop 
The vapour energy equation is solved by the Keller- 

Box method [54] using the droplet distribution from 
the previous elevation. A desirable feature of this 
method is that it allows the use of a variable radial 
step size. Moreover, it is unconditionally stable and 
second-order accurate. The discretized system results 
in a block tridiagonal matrix that can be directly 
inverted. The application of the Keller-Box method 
to the present two-phase problem is illustrated by 
Andreani [16]. A first-guess radial temperature profile 
is obtained this way and the new vapour properties 
are calculated. Equation (1) gives the new average 
axial velocity, and the new axial velocity distribution 
is obtained from the two-layer profile. The radial vel- 
ocities can be calculated from equation (2) with an 

explicit numerical technique. At this point, equation 
(3) can be integrated again to give an updated guess 
for the radial temperature profile and the procedure 
is repeated until convergence of the internal loop is 
reached. 

External loop 
Velocities and positions of the droplets in the r-4b 

plane are updated by integrating equations (8)-(9) 
over their residence time At (equation 20) in the axial 
mesh Az. For this integration, the interval At is sub- 
divided in time steps of length dt, small enough to 
avoid that any droplet travels a distance larger than 
its distance from the wall during dt. Considering lift 
and thrust forces constant during dt and neglecting the 
average velocity of the vapour in the cross-sectional 
plane, equation (9) can be integrated analytically. The 
radii of the droplets are calculated by explicit inte- 
gration of equation (16). After each time step dr, each 
computational droplet is checked for the occurrence 
of break-up. If the critical Weber number of a par- 
ticular break-up process is exceeded, the droplet is 
'marked' (in a different way for each of the three 
different processes), and eventually it splits into new 
computational droplets (Section 5.3). 

The knowledge of the position of the droplets allows 
to calculate the liquid fraction distribution. Ifunphysi- 
cally high droplet packing is detected, the mass of the 
droplets in the region of high density is redistributed 
among the adjacent cells (Section 6.3). 

The mass sources and heat sinks are then calculated 
and these values are introduced in the vapour energy 
equation to get a new temperature distribution (by 
iteration over the internal loop). Finally, the external 
loop is repeated until the wall temperature converges. 

Verification o J" the numerical scheme 
In order to assess the numerical scheme, single- 

phase calculations have been carried out and com- 
parisons with analytical or numerical solutions or 
well-established empirical correlations for both lami- 
nar [18, 55] and turbulent [18, 56, 57] flow were per- 
formed. 

The number of radial nodes in the laminar sublayer 
was between 10 and 20, while in the turbulent core 20 
nodes were sufficient to reach satisfactory accuracy. 
Excellent agreement with the available solutions was 
obtained, at least a few diameters above z = 0, where 
the influence of the developing velocity profile is no 
longer appreciable. The radial mesh used for the two- 
phase calculations was similar. 

The number of radial meshes, as well as the number 
o[computational droplets are defined by input values: 
parametric studies to estimate the influence of such 
parameters on the calculated results are thus required. 
Sensitivity studies for two different test conditions 
(among those considered in Part II) were performed 
[16] : the first was dominated by wall-impact break- 
up and the second by aerodynamic break-up. In both 
cases, both radial mesh NR (30 to 70) and number of 
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computa t iona l  droplets  N D  (6-20, per droplet  size) 
had  a quite small impact  on  the calculated wall and  
vapour  temperatures .  Moreover ,  independent ly  of  the 
choice of  N R  and  N D  the global energy balance 
(energy input = mixture enthalpy increase) was pre- 
served : the error  was never larger than  2%. This glo- 
bal energy balance has  been checked for all the cal- 
culat ions carried out  with equally good results. 

It can, therefore,  be concluded that  the results 
obta ined  and  discussed in the compan ion  paper  (Part  
II) reflect the physics tha t  is imbedded in the model 
and  are not  affected by the accuracy of  the numerical  
implementat ion.  

A typical case required ~ 1 h of  C P U  time on a 
C Y B E R  180-855 computer .  

8. CONCLUSION 

A novel model  specifically assembled to treat  in 
detail the two- and  three-dimensional  features of  the 
droplet  and  vapour  velocity and  tempera ture  fields 
under  typical dispersed flow film boiling condi t ions  
was presented. Special emphasis  was placed on droplet  
hydrodynamics .  This model  will be fully assessed and  
conf ron ted  to several sets of  experimental  da ta  in the 
compan ion  paper  (Part  II). 
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